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Text Snake and Thin Plate Spline Transformation for Text Recognition Model

Anonymous Authors1

Abstract

Detecting and recognizing text in a natural set-
ting is a challenging task due to various shapes
and unpredictable environment these texts are a
part of. Most methods have successfully detected
text instances in an environment despite the envi-
ronment’s complexity. However, most methods
assume the text instances are somewhat straight
or in a linear format. However, it is quite common
to find text that is “curved” or non-linear in the
real world. Therefore, applying a text recogni-
tion model on the output of a text detection model
using STN fails to achieve desired results. Fur-
thermore, even after detecting the text, one must
rectify the text before feeding it into the text recog-
nition model. Therefore, I propose a method that
combines a previous text detection model((Long
et al., 2018)) with a text rectification algorithm:
Thin Plate Spline (TPS) and a text recognition
model((Bartz et al., 2018)) to identify curved text
in natural settings.

1. Brief Summary
Three previous state of the art methods that have suc-
cessfully detected and recognized text include: SEE: To-
wards Semi-Supervised End-to-End Text (Bartz et al., 2018),
Symmetry-Constrained Rectification Network for Scene
Text Recognition (Yang et al., 2019), and Mask TextSpotter:
An End-to-End Trainable Neural Network for Spotting Text
with Arbitrary Shapes (Lyu et al., 2018). At a high level, the
relationship between each of the papers is the problem they
are trying to solve. The problem is too detect and recognize
text in the “wild”. This means finding images from natural
settings such as street and traffic signs, billboards, etc. At a
deeper level, the relationship between these papers shows
how they tackle this problem. There are two components to
working with finding text in natural settings: text detection
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and text recognition. Different papers state that they should
tackle the problem by either working separately on text de-
tection and text recognition, while other papers say to treat
these two processes as one problem.

2. Related Work
2.1. SEE: Towards Semi-Supervised End-to-End Text

2.1.1. SUMMARY

According to (Bartz et al., 2018), the authors sug-
gest a single deep neural network “that learns to detect and
recognize text from natural images, in a semi-supervised
way”. In essence they have created one network to tackle
the problem of both recognizing and detecting text in a neu-
ral network called SEE. A neural network can learn from
another neural network, and the authors of this paper have
taken that to advantage. SEE is a Deep Neural Network
that is comprised of two networks that integrates and jointly
learns from them. The first network is a spatial transformer
network (STN) and the second is a text recognition network
(TRN). A spatial transform network’s purpose is to change
an image using spatial transformations (such as Affine, Pro-
jective, TPS etc.), to enhance geometric in-variances in the
image (Tsang, 2019). SEE uses STN to learn how to detect
regions of an image as in real life, the text is not always
shown straightforward. Sometimes it is warped, circular, or
taken at an angle that makes it hard to read. After the STN,
the TRN can be used to now detect the text in the image as
the STN has corrected the image to the TRN’s advantage.

2.1.2. CRITIQUE

However, there are some drawbacks to this network.
The architecture of their network is very simple, but actually
training it requires certain data sets. One cannot just take
random pictures and have the network train on it. The
authors stated that they had to choose certain images and
feed this carefully chosen images in the network. Otherwise
it does not work as intended. However, if done correctly it
gives competitive results. The authors compare their method
to other methods accuracy of the SVHN data set and the
FSNS data set. They show that their results compared to
two state of the art networks.

While their results are not the highest, their whole
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purpose is to show that even if they combine the text recog-
nition and text identification networks into one DNN it can
still provide promising results similar to those who treat
identification and recognition as two separate tasks. Their
method is still computationally more efficient and still accu-
rate as well. However, another fault of this architecture is
that it does not work as well in the FSNS data set. Although
the accuracy was somewhat in the middle between the two
state of the art methods, its drawback is that the model is
forced to recognize a limited number of works. Therefore, if
there is more text in the image, the model ignores it. Some
questions I have for this article is exactly what is their crite-
ria for an image that would be good to train this model. Is
there a certain way we can calculate what image is “good”
and what image is “bad”? Another critique I would like
to add is that this article did not test their architecture on a
lot of data sets. There are many data sets that are available
to the public to test their model (IIIT5K, SVT, IC03, IC13,
IC15, SVTP, CUTE etc.) However, the authors in this paper
tested their method on 2-3 data sets. Therefore, I am not too
sure about the robustness of their architecture.

2.2. Symmetry-Constrained Rectification Network for
Scene Text Recognition

2.2.1. SUMMARY

However, according to (Lyu et al., 2018) tackling text
detection and recognition separately might be better and
actually leads to better results. (Lyu et al., 2018) proposes
adding a text rectification module by using a Symmetry-
constrained Rectification Network (ScRN) than applying a
recognition module to find the word from the image. They
claim ScRN performs very well and still does not require
extra computation. Diving deeper into the method, there
are three main components to (Lyu et al., 2018) method:
the backbone, the rectification module, and the recognition
module. The backbone of the architecture is FPN (Fea-
ture Pyramid Network) coupled with ResNet-50. This is
used by both the rectification and the recognition module.
The rectification module produces dense pixel-wise predic-
tions of geometric attributes. This is how feature maps are
“rectified” as regular ones via TPS (a tool for modeling
coordinate transformation). The geometric attributes of a
text is the scale orientation, character orientation, and text
orientation. These three attributes are extracted and then
inputs into a TPS (Thin-Plate-Spline). This transformation
takes the points given from the geometric attributes, and
straightens the crooked or out of shape words in the image.
Now an enriched feature map is inputs into the recognition
module. The recognition module is comprised of 4 con-
volution layers, where the layers further encode the image
and reserve more discernible features of the text, and a bidi-
rectional LSTM. All together, this architecture is called a
Symmetry-constrained Rectification Network (an ScRN).

2.2.2. CRITIQUE

Critiquing the paper there are both cons and pros to it.
The cons of this architecture is that the “rectification module
suffers from the curved text whose terminal characters have
a nearly horizontal orientation and are close to the image
borders,” (Lyu et al., 2018). This means that if the image has
text that spills over the boards or have words where the mid-
dle letters are curved and the end letters are horizontal, the
capture word misses those horizontal oriented letters. How-
ever, the pros of this paper is that according to the 7 data sets:
IIIT5K, SVT, IC03, IC13, IC15, SVTP, CUTE, comparing
it to existing methods, their method scored higher or was
second by 0.06 at most. This shows that their architecture
performed very well and was also had less computation than
the existing state of the art methods.

My questions for this article primarily concerned with
the computation time. This claims that it is computation-
ally better but does not give any data to support this. And
since one of the future project concerning this article is
combining it with an end-to-end system that can deal with
text-recognition (the SEE project), they should address the
computation time as I would like to accomplish this task.
My other question is why does this not work words that are
in a straight line? It seems that that the images they had most
trouble with were words that were considered straight. And
if this is the case, why not consider these as two separate
tasks and deal with them accordingly?

2.3. Summary and Critique of Mask TextSpotter: An
End-to-End Trainable Neural Network for
Spotting Text with Arbitrary Shapes

2.3.1. SUMMARY

Similar to (Bartz et al., 2018), (Yang et al., 2019) notes
that text detection and recognition handled separately lead
to sub-optimal performances because both tasks are highly
correlated. Therefore they propose a text spotter which both
detects and recognizes arbitrary text. (Arbitrary just being
text found in real world settings). Another commonality
between these paper and (Bartz et al., 2018) is that the task
of recognition and detection can be done end-to-end.

Diving deeper into the methodology the name of their
whole architecture is called Mask TextSpotter. What is really
special about this architecture is that unlike the architecture
listed above it can handle both “regular” and “irregular” text
in 2-D space. To understand how this is done there are four
components that are involved: A. A Feature Pyramid for the
backbone, B. a RPN that will generate text proposals, C. a
Fast R-CNN that is used for 1. bound box regression,and D.
a mask branch for text instance, character segmentation and
text sequence recognition.

A. Because text in the “wild” are in different sizes,
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they have to all be formatted in such a way that they are
comparable. Like (Lyu et al., 2018), (Yang et al., 2019)
applies a FPN backbone along with the ResNet-50. (To see
why this is a good component to implement, refer back to
(Lyu et al., 2018) summary to understand). But to reiterate,
it improves accuracy and has little cost.

B. RPN stands for Region Proposal Network. It is
the backbone for the Fast R-CNN and on of the networks
that are part of it (Karmarkar, 2018). The main purpose is
to create “proposals” or a rough estimate of where certain
objects may lay in the image (in our case whats the rough
estimate of where the text is in the image). This is helpful as
it can reduce the amount of time needed for the subsequent
part of the Fast R-CNN.

C. Now that the RPN has figured out “proposals” for
where the text lies and gives rough estimates through bound-
ing boxes, the Fast R-CNN then includes the classification
task and the regression task where both tasks will output
much more accurate bounding boxes for detection.

D. The role of actually detecting and recognizing the
text is the mask branch. There are three parts: text instance
segmentation task, character segmentation task, and text
sequence recognition. The character and text instance seg-
mentation is easy enough to deal with and a feature maps
are created. However, there are some limitations with these
maps and therefore, the authors proposes a SAM (spatial
attention module). It decodes the text sequence from the fea-
ture map. This module will produce a better representation
of the various shapes.

In total, the Mask TextSpotter is a comprised of four
components that is not only very easy to train, it can work
on regular or irregular text.

2.3.2. CRITIQUE

This architecture does a very good job of actually
spotting and recognizing the images. The data sets that they
test their architecture on is the same as the data sets in the
(Lyu et al., 2018) article. And I have to say that I am pretty
impressed. They have accuracys as high as 99.8. When
comparing (Lyu et al., 2018) and (Yang et al., 2019) results,
(Yang et al., 2019) does better in every data set. However,
one drawback for this architecture is that it is a little slower.
However, the speed of the model is still comparable to other
state-of-the-art architectures. Most architectures have an
FPS between 0-6.9. However, (Yang et al., 2019) FPS is
9.0, which is definitely slower, but the results that it outputs
outweighs the time it takes to detect and recognize the text
in my opinion. This architecture is also much better than
(Bartz et al., 2018) because it’s model does not have to be
trained specially. It is adaptable to any data set.

However, some questions I have is why does the SAM

(spatial attentional module) do much better compared to pre-
vious methods done? The authors specify that their method
does not rely on “real-world character-level annotations”
which proves SAM’s effectiveness. However they are not
really clear how that works.

3. Implementation Goals
For the future I would like to extend the research pa-

per SEE: Towards Semi-Supervised End-to-End Text (Bartz
et al., 2018). This paper already has a github repository (lo-
cated here: https://github.com/Bartzi/see) where they have a
very detailed READ me. In addition, this paper implements
a single deep neural network to accomplish two tasks. As an
undergraduate, this might be best to work with as I do not
have much experience with any of these networks, modules,
or models. In their paper, (Bartz et al., 2018) claimed that
their model works well in a natural setting. I was testing the
text recognition model on images from the data set provide
by (Bartz et al., 2018) and I saw that their recognition model
worked very well. However, when I tried to run their text
recognition model on the CUTE 80 data set I saw that it
was not accurate at all. I realized this is because the images
provided in the data set where prepossessed and rectified.
However, the images from CUTE 80 where not and all the
images had curved text. Therefore, as shown in Figures 1
through 4, for the word egomaniacs, the word is cropped
and in a straight line, while the word crocodile is curved and
in a natural setting. Figure 2 and 4 are the output given for
the images egomaniacs and crocodiles respectively and one
can see that the word egomaniacs is accurately interpreted,
while the word crocodile is not.

Figure 1. Image with the EGOMANICS from data set provide by
Bartz

Figure 2. Output from the data set provide by Bartz correctly iden-
tifying the word

While reading (Yang et al., 2019) paper, one of their
proposed future works was “to extend the proposed method
to an end-to-end text recognition system which can deal
with text instances of arbitrary shapes,”. Bartz model is an
end-to-end text recognition system and I have decided to
extend their model by adding a text detection model created
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Figure 3. Image from CUTE 80 with the word crocodile

Figure 4. Output given from Bartz model not interpreting the word
from CUTE80 correctly

by (Long et al., 2018) and text rectification process. (Yang
et al., 2019) mentioned using TPS as a way to straighten
out the image which is what I will use for this extension.
This way, now that the images will be processed and can
be feed into the Text Recognition model created by (Bartz
et al., 2018) to achieve competitive results.

4. Methodology
The overarching plan for this extension again is to add

a text detection and text rectification process before applying
a text recognition model on the rectified images. Based on
my research the best text detection model for curved images
is (Long et al., 2018). According to (Yang et al., 2019) the
best image rectification process is TPS. The text recognition
model will then interpret the rectified words processed from
TPS.

4.1. Text Detection Model

When looking for a text detection model I realized I
need two things from the model: the TCL of a word and the
contours of the words. The TCL or the text center line, is a
line that is created by the center of each character of a text
instance and contours of the word is a line that encapsulates
the text instance. (Long et al., 2018) provided all of these
inputs. In more detail the text center line created by first
detecting the center of each character. The center is then
surrounded by a disk. Then the center of the disks are used
to create a line that string through each center and create the
text center line. The contours is the line that encapsulates
the entire word. Fig. 5 depicts what this looks like. The

difference with (Long et al., 2018) and previous state of the
art is that they do not assume that text is in a straight line,
therefore their methodology works well on curved image.
To detect curved text (Long et al., 2018) uses an FCN and
FPN inspired model to predict the score maps of TCL and
TR (text region) where it treats the detect text or word as t.
S(t) represents the word as a series of disks where each disk
contains a character in the word:

S(t) = D0, D1...Dn

where each Di has 3 geometric attributes = (c, r, θ). c is
the center of disk, r is the radius of the disk and θ is the
orientation of the disk. The radius is calculated by half the
width of t, the orientation θ is tangential direction of the
center linear around center c.

Figure 5. Example of the Text Snake or the TCL of a word given
by (Long et al., 2018). The blue dotted line is the disk, the yellow
solid line is the contours of the word, and the green line is the TCL

The network Architecture works consists of 5 stages
of convolution where in each stage the feature map is fed
to the feature merging network. Each feature map is repre-
sented by fi where i = [1,5] and hi represents the feature
maps of merging units. After merging is complete an addi-
tional upsampling layer and 2 convolutional layers are used
to receive the dense prediction. Upsampling is a process of
increasing the sampling rate by adding zeros and treating
them as samples received in order to maintain its length with
respect to time. This way the prediction score has the same
size as the input image. The prediction is given as:

P ∈ Rhxwx7

where the 4 channels are the logits (function that maps prob-
ability to R) of TR/TCL and the last 3 channels are for r,
cosθ , sinθ. Because the output was the logits of TR/TCL
the final predictions can be obtained by taking the softmax
and regularizing cosθ and sinθ. The TCL is saved as a 2D
list that consists of pairs of [x,y], where x and y are the coor-
dinates of the each center point. This is the output I used and
fed into the TPS algorithm. The TR is saved and fed in to the
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Figure 6. Network architecture created by (Long et al., 2018)

TPS algorithm as well. The github was incorporated into this
project modified in order to receive the TCL. This text de-
tection model has code written and located in this repository
(https://github.com/princewang1994/TextSnake.pytorch)

4.2. TPS

TPS, also known as thin plate spline, is an interpo-
lation method. A spline is a piece wise polynomial curve
while interpolation is a process of creating new data points
within the constraints of known data points. The main point
of interpolation is to find the best equation for a known
curve, in our case, the spline curve. The term thin plate is
analogous to the bending of a thin sheet of metal which is
essential what TPS does. In Fig. 7 part (a) the “thin plate” is
the image and there are two important features which are the
source points depicted as blue circles and the target points
denoted by 5 red x’s. Part (b) shows the end results of TPS
where it moved the source points to their respective target
points and warped the image in the process. Essentially, it
is a coordinate mapping from R2 to R2.

Figure 7. TPS warping process. (a represents before TPS (b repre-
sents after TPS

Looking at the algorithm in greater detail we first
set the source (original) points as (xi, yi) and the target
(end) points as vi where i = [1,p] where p is the numbers of
points in the data set. The first step in achieveing the shape
transformation is this equation:

Urij = r2ij log(rij)

This equation calculates the relative amount of ‘en-

ergy’ required to achieve a bend between (xi, yi) and vi. It
requires more ‘energy’ ie. more difficult to achieve a bend
between closely spaced landmarks than between landmarks
located at a certain distance from each other.

The TPS interpolant calculates the 2D representation
of the 3D TPS surface which is given in the form:

f(x, y) = a1+axx+ayy+Σp
i=1wiU(‖ (xi, yi)−(x, y) ‖)

To ensure that (f(xi, yi)) has square integrable sec-
ond derivatives two conditions must be met:

Σp
i=1wi = 0

Σp
i=1wixi = Σp

i=1wiyi = 0

With the two conditions, U(r), and the TPS inter-
polant form, we can finally yield a linear system for the TPS
coefficeints which is given as follows:[

K P
PT O

] [
w
a

]
=

[
v
o

]

Kij = U(‖ (xi, yi)− (x, y) ‖). The K matrix repre-
sents the distances between (xi, yi) and vi. The ith row of
P is (1, xi, yi). The P matrix represents the distances of the
coordinates (xi, yi). O is a 3 x 3 matrix of zeros, o is a 3x1
column vector of zeros, w and v are column vectors formed
from wi and vi and a is the column vectors with elements
a1, ax, ay . Now the (p+3) x (p+3) matrix will be considered
as L. The upper left pxp block of L−1 represented by L−1

p .
The TPS surface can now be calculated by inverse of ma-
trix L and the target matrix denoted by Xc where the final
equation is given as:

TPSuniform = XcL
−1
p

Figure 8. A Spline Curve converted into a Straight Line

TPSuniform represents a ‘grid’ that has been warped
which in our case is the image itself. The (x, y) coordinates
can be determined by (xt, yt). After understanding the
algorithm, one can see that a Spline can be used to convert
into a Straight line using the TPS algorithm. In order to do



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2020

this, first, I created the TPS class that followed the algorithm.
(I had tried to use the openCV library for TPS transformation
but it only rotated the image by a certain degree). Now I
had to figure out what my source and target points were.
Evidently, the source points is the TCL given from the text
detection model mentioned above. However, the destination
target had to be a straight line. I kept the x coordinates from
the TCL line the same but set the y values of each as the
half the height of the image. However, as mentioned in the
algorithm one had to calculate L−1. But, in this case the
matrix will be singular and therefore cannot have an inverse.
Therefore, in order to circumvent this issue instead of using
the inverse function, I used least squares regression. This
methodology does work but increases the computation time.

After applying TPS on the image, I cropped the image
in a rectangular form. The height of the image is denoted
as (ht), and the contours are determined by (cxi, cyi) This
rectangular form can be denoted by (left, top), (right, bot-
tom). Left = min(xt), right = max(xt), top = max( cyi) +
ht/10, bottom = max( cyi) - (ht)/10. A grey scale is then
used on the images as the last step.

4.3. Text Recognition Model

The Text Recognition model used to determine the
word was created by (Bartz et al., 2018). The Text Detection
Model used by Bartz used a spatial transformer to detect
images. The STN produces a set of N regions. In this
methodology however, the text detection is replaced by
(Long et al., 2018) and the text recognition model reads
from the images in the processed CUTE80 data set. Bartz
uses a CNN model that predicts the probability distribution
labeled at over the label space which is computed as A∪{ε}.
A is the alphabet being used for recognition (in our case
the English alphabet) and ε represents the blank label. This
network was previously trained by running a LSTM. An
LSTM is a RNN that stands for long short-term memory
where gates are used to retain or throw information that is
deemed important or irrelevant respectively. It was trained
on a fixed number of time steps which is essentially the
number of characters. The maximum numebr of characters
this model was trained on was 23. In the case of using
CUTE80, this is perfectly acceptable as no single text or
word in these images have more than 23 characters.

5. Evaluation and Results
I evaluated my method on one data set which was the

CUTE 80 data set created by (Anhar Risnumawana).

CUTE80 (CUTE) is designed to evaluate curved text
recognition. It has 80 images for testing.

When testing the text rectification part, I realized that
the text recognition model can only handle one word at

a time, so even if the text detection model could detect
multiple words, I took the first word it detected and focused
on rectifying that specific text instance. In order to give a
quantitative analysis of how accurately the text recognition
model determines the word I created a ground truth file for
all the first words detected in each image. Then I compared
each character in the ground truth file word with the each
character in the predicted word. Each time a character is
correct I added one to a sum. Then I divided that sum by the
number of characters present in the ground truth word. Then
I repeated this process for every word in the data set. Once
all the accuracies for each word was calculated, I calculated
the overall accuracy by dividing the sum of these accuracies
by the total number of words. This is similar to how (Bartz
et al., 2018) calculated their accuracies on the FSNS and
SVHN data set.

As seen in Fig. 9, 10, 11, after the process of text
detection and text rectification, the text recognition model
could accurately determine the text in the image.

Now, with the data set given by (Bartz et al., 2018),
we can see that their model works very well and achieved
an accuracy score of .96. However, when I ran the evalua-
tion script on the CUTE 80 data set it achieved an accuracy
score of zero. After running the the model on the processed
CUTE80 data set after TPS, however, we can see the accu-
racy has jumped to .42 seen in the Sequence Accuracy Table
below. While 42% is not a competitive result, it shows how
much of a difference it makes to perform TPS on an image
before feeding it into a text recognition model. It shows the
importance of preprocessing data sets before using them.

Sequence Accuracy
Data set provided 96.0587%

CUTE80 0.0000%
Post TPS CUTE80 42.0833%

This table shows the accuracies of each data set with
Bartz’s text recognition model

Figure 9. Image from CUTE 80. The left picture is the image with
TCL line that has been detected. The right picture shows the TPS
process and straightening the image
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Figure 10. CUTE 80 image processed for text recognition model

Figure 11. Bartz text recognition model successfully works in in-
terpreting crocodile

6. Limitations and Challenges
6.1. Limitations

As shown in Fig. 12 and Fig. 13 , when an image
is curved too much, the TPS algorithm does not work as
well. One reason is that there is a congregation of points in a
similar area rather than having them spread out. This biases
the algorithm and warps the image towards that direction
rather than evenly changing the image. Mathematically, as
explained in the TPS section, the amount of difficulty in
mapping points closer to each other is raised significantly.
As one can see in Figure 12 there are more clusters of points
on both ends of the TCL. Therefore the image is skewed
towards those clusters more. In the future, in order to fix
this issue, there should be an algorithm that takes points
from the TCL that are more evenly distributed. This way
there is less difficulty when performing the TPS method.

Another limitation is that the algorithm I created is
very slow. The TPS algorithm itself has a runtime of O(n3).
Therefore, when I was working with images that were more
than 2000 x 2000 pixels the algorithm took a couple of
minutes to warp the image. I had to separate out the pro-
cesses of text detecting, warping, and recognition into three
parts. Running each of these processes separately was time
consuming.

Figure 12. TPS transformation on Starbucks sign

Figure 13. Bartz text recognition model does not correctly identify
Starbucks

6.2. Challenges

There were two main challenges when creating this
project. One was the allocation of time given to me for GPU
in Google Collab. After running my scripts on the GPU
for 15 minutes, the active session would crash and I was
disconnected from using the GPU for the next 8-12 hours.
This was very frustrating but opened my eyes to the fact that
when creating scripts I cannot always change a little bit of
my code and then run it to test my code. I had to really think
about the changes I was making and then test it out once
I was sure it was working. The second challenge in this
project was working with data sets. When I tried working
with the FSNS and SVHN data sets I under estimated their
size and realized I had no space on my Google Drive to
work with these data sets. Therefore, I had to find a data
set that was some what smaller. This way I had a lot more
control over what was happening. However, the extra step
was that I had to create a ground truth file for each of the
images in order to evaluate my methodology.

7. Take Home Message and Future Goals
Betwen STN and TPS, it seems that TPS has faired

better and does a better job of handling both straight and
curved text, while an STN can only handle relatively straight
text. We can see that there was a significant increase in the
accuracies when the images were processed. The obvious
goal was to try to achieve an accuracy that was equivalent
to or greater than the accuracy on the data set provided,
but again the data set provided was from images that were
original straight, and processed by the STN. However, the
STN did not help with the curved text in the CUTE80 data
set.

For the future, one can see that the TPS algorithm
does not work well when the TCL is not evenly distributed.
This is most likely because every point is changed from its
original point to its destination point. If there are multiple
points in a certain area, the TPS algorithm finds mapping
coordinates that are closer to each other more difficulty or
requires more ‘energy’. Furthermore, there are multiple
ways to decrease the TPS algorithm computation, one such
way is by adding a regularizer. In the future, I hope to
create a much more robust TPS algorithm incorporating this
method.
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